

# **Course Syllabus**

| 1  | Course title                                        | Optics-2                                                          |
|----|-----------------------------------------------------|-------------------------------------------------------------------|
| 2  | Course number                                       | 0302321                                                           |
| 3  | Credit hours                                        | 3                                                                 |
| 5  | Contact hours (theory, practical)                   | 3 (theory)                                                        |
| 4  | Prerequisites/corequisites                          | Optics I                                                          |
| 5  | Program title                                       | Bsc in Physics                                                    |
| 6  | Program code                                        |                                                                   |
| 7  | Awarding institution                                |                                                                   |
| 8  | School                                              | Science                                                           |
| 9  | Department                                          | Physics                                                           |
| 10 | Course level                                        | 3 <sup>rd</sup> year                                              |
| 11 | Year of study and semester(s)                       | Second semesrer-2023                                              |
| 12 | Other department(s) involved in teaching the course |                                                                   |
| 13 | Main teaching language                              | English                                                           |
| 14 | Delivery method                                     | □ Face to face learning □ Blended □ Fully online                  |
| 15 | Online platforms(s)                                 | □Moodle □Microsoft Teams □Skype □Zoom<br>⊠Others: Microsoft Teams |
| 16 | Issuing/Revision Date                               |                                                                   |

| مركـز الاعتماد<br>وضمان الجودة<br>فرصمان الجودة |                               |
|-------------------------------------------------|-------------------------------|
| Name: Dr.Yahia Al Ramdien                       | Contact hours: 3 hours weekly |
| Office number:                                  | Phone number:                 |
| Email:Y.ramadeen@ju/edu/jo                      |                               |
|                                                 |                               |

### 18 Other instructors:

| Name:          |
|----------------|
| Office number: |
| Phone number:  |
| Email:         |
| Contact hours: |
| Name:          |
| Office number: |
| Phone number:  |
| Email:         |
| Contact hours: |

# **19 Course Description:**

As stated in the approved study plan.



### 20 Course aims and outcomes:



### A- Aims:

B- Students Learning Outcomes (SLOs):

For purposes of mapping the course SLOs to the physics program SLOs, at the successful completion of the physics program, graduates are expected to be able to:

- 1. An ability to identify, formulate, and solve broadly defined technical or scientific problems by applying knowledge of mathematics and science and/or technical topics to areas relevant to the discipline.
- 2. An ability to formulate or design a system, process, procedure or program to meet desired needs.
- 3. An ability to develop and conduct experiments or test hypotheses, analyze and interpret data and use scientific judgment to draw conclusions.
- 4. An ability to communicate effectively with a range of audiences.
- 5. An ability to understand ethical and professional responsibilities and the impact of technical and/or scientific solutions in global, economic, environmental, and societal contexts.
- 6. An ability to function effectively in teams that establish goals, plan tasks, meet deadlines, and analyze risk and uncertainty.

| Upon successful completion of this course, students will be all | ble to: |
|-----------------------------------------------------------------|---------|
|-----------------------------------------------------------------|---------|

| Program SLOs<br>Course SLOs                                                                                                                                                                                                                                              | SLO<br>(1) | SLO<br>(2) | SLO<br>(3) | SLO<br>(4) | SLO<br>(5) | SLO<br>(6) | SLO<br>(7) | SLO<br>(8) | SLO<br>(9) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1. Provide students with the<br>necessary vector algebra and<br>vector calculus needed to tackle<br>the elements of classical<br>electromagnetic theory.                                                                                                                 | ~          | ~          | ~          |            |            |            |            |            |            |
| 2. Students will be able to define the basic concepts related to classical electromagnetic theory and represent electromagnetic waves, which include light waves. Results from electromagnetism describing the physics of electromagnetic waves are borrowed to enable a | ~          | ~          | ~          |            |            |            |            |            |            |



| ACCREDITATION | פריידיאנוואאני באדע<br>בעריידיאנוואאני באדע                                                                                                                                                                                                                                                                               |          |          |   | <br> | <br> | <br> |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|---|------|------|------|--|
|               | determination of the energy delivered by such waves.                                                                                                                                                                                                                                                                      |          |          |   |      |      |      |  |
| 3.            | Students will be able to discuss<br>and identify The polarization of<br>an electromagnetic wave.                                                                                                                                                                                                                          | <b>v</b> | <b>√</b> | ~ |      |      |      |  |
| 4.            | Students will be we develop two-<br>element column matrices or<br>vectors to represent light in<br>various modes of polarization.<br>Then they examine the physical<br>elements that produce polarized<br>light and discover corresponding<br>matrices that function as<br>mathematical operators on the<br>Jones vectors | ~        | ~        | ~ |      |      |      |  |
| 5.            | Students will be able to<br>introduced the use of multilayer<br>stacks of films, and develop a<br>transfer matrix to represent the<br>film and characterize its<br>performance                                                                                                                                            | <b>~</b> | <b>~</b> | ~ |      |      |      |  |
| 6.            | Students will be able to describe Fersnel Equations.                                                                                                                                                                                                                                                                      | ✓        | ✓        | ✓ |      |      |      |  |
| 7.            | precisely the area of nonlinear<br>optics, describe and categorize<br>some nonlinear phenomena, and<br>discuss some of their practical<br>applications.                                                                                                                                                                   | ✓        | ~        | ~ |      |      |      |  |
| 8.            | Student will use Maxwell's<br>equations and the mathematical<br>techniques of vector calculus to<br>understand in particular how the<br>refractive index and the<br>absorption coefficient for<br>isotropic conducting (metals) and<br>nonconducting (insulators or<br>dielectrics) materials can be<br>driven            | ~        | ~        | ~ |      |      |      |  |

Г

6

| 9. | Student will be given a quantitative treatment of laser operation. | ~ | ~ | ~ |  |  |  |   |
|----|--------------------------------------------------------------------|---|---|---|--|--|--|---|
|    |                                                                    |   |   |   |  |  |  | - |

# 21. Topic Outline and Schedule:

| Week | Lecture | Торіс                                                        | Intended<br>Learning<br>Outcome | Learning<br>Methods (Face<br>to Face/Blended/<br>Fully Online) | Platform | Synchronous /<br>Asynchronous<br>Lecturing | Evaluation<br>Methods | Resources |
|------|---------|--------------------------------------------------------------|---------------------------------|----------------------------------------------------------------|----------|--------------------------------------------|-----------------------|-----------|
|      | 4.8     | Electromagne<br>tic Waves                                    | 1,2                             | Face to face                                                   |          |                                            | Quiz                  |           |
| 1    | 4.9     | Light polarization                                           | 3                               | Face to face                                                   |          |                                            | Mid<br>Exam           |           |
|      | 15.1    | Dichroism                                                    | 3                               | Face to face                                                   |          |                                            | Mid<br>Exam           |           |
|      | 15.2    | Polarization by<br>Reflection<br>from Dielectric<br>Surfaces | 3                               | Face to face                                                   |          |                                            | Mid<br>Exam           |           |
| 2    | 15.3    | Polarization<br>by Scattering                                | 3                               | Face to face                                                   |          |                                            | Mid<br>Exam           |           |
|      | 15.4    | Polarization<br>with Two<br>Refractive<br>Indices            | 3                               | Face to face                                                   |          |                                            | Quiz                  |           |
|      | 15.5    | Double<br>Refraction                                         | 3                               | Face to face                                                   |          |                                            | Mid<br>Exam           |           |
| 3    | 15.6    | Optical<br>Activity                                          | 3                               | Face to face                                                   |          |                                            | Mid<br>Exam           |           |
|      | 15.7    | Photoelasticiy                                               | 3                               | Face to face                                                   |          |                                            | Mid<br>Exam           |           |
| 4    | 14.1    | Jones Vectors                                                | 4                               | Face to face                                                   |          |                                            | Mid<br>Exam           |           |



| ACCREDITATION & GUALITY ASSURANCE |      |                                         | - | ·            | 1 |                      |
|-----------------------------------|------|-----------------------------------------|---|--------------|---|----------------------|
|                                   | 14.2 | Jones<br>Matrices                       | 4 | Face to face |   | Mid<br>Exam          |
|                                   | 14.2 | Jones<br>Matrices                       | 4 | Face to face |   | Mid<br>Exam          |
|                                   | 22.1 | Transfer<br>Matrix                      | 5 | Face to face |   | Mid<br>Exam          |
| 5                                 | 22.2 | Reflectance at<br>Normal<br>Incidence   | 5 | Face to face |   | Mid<br>Exam          |
|                                   | 22.3 | Two-Layer<br>Antireflecting<br>Films    | 5 | Face to face |   | Mid<br>Exam          |
|                                   | 22.4 | Three-Layer<br>Antireflecting<br>Films  | 5 | Face to face |   | Quiz,<br>mid<br>Exam |
| 6                                 | 22.4 | Three-Layer<br>Antireflecting<br>Films  | 5 | Face to face |   | Mid<br>Exam          |
|                                   | 22.5 | High-<br>Reflective<br>Layers           | 5 | Face to face |   | Final<br>Exam        |
|                                   | 23.1 | The Fresnel<br>Equations                | 6 | Face to face |   | Final<br>Exam        |
| 7                                 | 23.2 | External and<br>Internal<br>Reflections | 6 | Face to face |   | Final<br>Exam        |
|                                   | 23.3 | Phase<br>Changes on<br>Reflection       | 6 | Face to face |   | Final<br>Exam        |
| 8                                 | 23.4 | Conservation<br>of Energy               | 6 | Face to face |   | Final<br>Exam        |
|                                   | 23.5 | Evanescent<br>Waves                     | 6 | Face to face |   | Final<br>Exam        |



| ACCREDITATION & QUALITY ASSURAN | CE CENTER |                 | 1 | -            | 1 |        |
|---------------------------------|-----------|-----------------|---|--------------|---|--------|
|                                 |           | Complex         | 6 |              |   | Final  |
|                                 | 23.6      | Refractive      |   |              |   | Exam   |
|                                 |           | Index           |   | Face to face |   |        |
|                                 |           |                 |   |              |   |        |
|                                 | 22.7      | Reflection      | 6 |              |   | Final  |
|                                 | 23.7      | from Metals     |   | Face to face |   | Exam   |
|                                 |           |                 |   |              |   |        |
|                                 | 24.1      | The Nonlinear   | 7 |              |   | Final  |
|                                 | 24.1      | Medium          |   | Face to face |   | Exam   |
| 9                               |           |                 | _ |              |   |        |
|                                 |           | Second          | 7 |              |   | Final  |
|                                 |           | Harmonic        |   |              |   | Exam   |
|                                 | 24.2      | Generation      |   |              |   |        |
|                                 |           | and Frequency   |   |              |   |        |
|                                 |           | Mixing          |   | Face to face |   |        |
|                                 |           | 0               |   | 1            |   |        |
|                                 | 24.3      | Electro-Optic   | 7 |              |   | Final  |
|                                 | 24.5      | Effects         |   | Face to face |   | Exam   |
|                                 |           |                 |   |              |   |        |
| 10                              | 24.5      | The Faraday     | 7 |              |   | Final  |
| 10                              | 24.5      | Effect          |   | Face to face |   | Exam   |
|                                 |           |                 | 7 |              |   |        |
|                                 | 24.6      | The Acousto-    | 7 |              |   | Final  |
|                                 |           | Optic Effect    |   | Face to face |   | Exam   |
|                                 |           | Optical Phase   | 7 |              |   | Final  |
|                                 | 24.7      |                 | / |              |   | Exam   |
|                                 |           | Conjugation     |   | Face to face |   | LXaiii |
|                                 |           | Polarization    | 8 |              |   | Final  |
| 11                              | 25.1      | of a Dielectric | - |              |   | Exam   |
|                                 | 23.1      | Medium          |   | Face to face |   |        |
|                                 |           | WEUIUIII        |   |              |   |        |
|                                 | 0.7.7     | Propagation     | 8 |              |   | Final  |
|                                 | 25.2      | of Light Waves  |   | Face to face |   | Exam   |
|                                 |           |                 |   |              |   |        |
|                                 |           | Conduction      | 8 |              |   | Final  |
|                                 | 25.3      | Current in a    |   |              |   | Exam   |
|                                 |           | Metal           |   | Face to face |   |        |
|                                 |           |                 |   |              |   |        |
| 12                              |           | Propagation     | 8 |              |   | Final  |
|                                 | 25.4      | of Light Waves  |   |              |   | Exam   |
|                                 |           | in a Metal      |   | Face to face |   |        |
|                                 |           |                 |   |              |   |        |
|                                 | 25.5      |                 | 8 |              |   | Final  |
|                                 | 23.5      | Skin Depth      |   | Face to face |   | Exam   |
|                                 |           |                 |   |              |   |        |



9

|    | 25.6    | Plasma<br>Frequency                 | 8 | Face to face |
|----|---------|-------------------------------------|---|--------------|
| 13 |         | Rate                                | 9 |              |
| 15 | 26.1    | Equations                           |   | Face to face |
|    | 26.2    | Absorption                          | 9 | Face to face |
|    | 26.3    | Gain Media                          | 9 | Face to face |
| 14 | 26.4    | Steady-State<br>Laser Output        | 9 | Face to face |
|    | 26.5    | Homogeneos<br>Broadening            | 9 | Face to face |
|    | 26.6    | Inhomogenes<br>Broadening           | 9 | Face to face |
| 15 | 26.7    | Time-<br>Dependent<br>Phenomena     | 9 | Face to face |
|    | 26.8,10 | Pulsed<br>Operation<br>Diode Lasers | 9 | Face to face |

### 22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

| Evaluation Activity | Mark | Topic(s)               | SLOs  | Period (Week) | Platform     |
|---------------------|------|------------------------|-------|---------------|--------------|
| Quiz                | 20   | Chapter<br>4,15,22     | 1,2,3 | 1-7           | Face to face |
| Mid Exam            | 30   | Chapters 4,15,14,22,23 | 1,2,3 | Week 8        | Face to face |
| Final Exam          | 50   | All chapters           | 1,2,3 | Week16        | Face to face |

#### 23 Course Requirements

(e.g: students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

### 24 Course Policies:

10

A- Attendance policies:

- B- Absences from exams and submitting assignments on time:
- C- Health and safety procedures:
- D- Honesty policy regarding cheating, plagiarism, misbehavior:
- E- Grading policy:
- F- Available university services that support achievement in the course:

#### 25 References:

A- Required book(s), assigned reading and audio-visuals:

Introduction to Optics , 3<sup>rd</sup> edition by Frank L.pedrotti, S., J, LENO M. PEDROTTI, LENO S. PEDROTTI

B- Recommended books, materials, and media:

### 26 Additional information:



| Name of Course Coordinator:              | Signature: Date: |
|------------------------------------------|------------------|
|                                          |                  |
| Head of Curriculum Committee/Department: | Signature:       |
|                                          |                  |
| Head of Department:                      | Signature:       |
| -                                        |                  |
| Head of Curriculum Committee/Faculty:    | Signature:       |
| -                                        |                  |
| Dean:                                    | Signature:       |
|                                          |                  |
|                                          |                  |